VISION HONG
article thumbnail
Focal Loss
Deep Learning 2022. 1. 2. 00:19

Focal Loss는 2017년 말에 Fair(현 Meta AI Research)에서 발표한 논문 'Focal Loss for Dense Object Detection'에서 소개되었으며 현재 Object Detection 모델중 1 stage detector(YOLO, SSD)와 같이 anchor box를 활용해 dense prediction을 하는 모델들은 현재까지 사용하고 있는 loss function이다. 논문에서는 Focal Loss를 적용한 RetinaNet이라는 모델을 소개하지만 이번 포스팅에는 Focal Loss의 핵심 개념을 이해하고 loss function을 구현해보려고 한다. 1. Limit Of Cross Entroy Loss Binary Cross Entropy loss는 위 식을 ..

article thumbnail
[블로그 리뷰] Self-supervised learning: The dark matter of intelligence
Deep Learning 2021. 12. 16. 18:42

이번 포스팅에서는 Meta AI의 VP인 Yann LeCun님이 21년 3월에 작성한 블로그를 번역하면서 필자의 생각과 함께 정리해 보려고 한다. Self-supervised learning: The dark matter of intelligence 최근 몇년동안 AI분야는 신중하게 라벨링된 거대한 양의 데이터로부터 학습하는 방식의 AI process가 엄청난 발전을 이루었다. Supervised-learning으로 학습된 모델은 학습된 task에 대해 매우 잘 작동하게 된다. 하지만 AI 분야가 Supervised-learning만으로 나아갈 수 있는 범위에는 한계가 있다. Supervised-learning은 라벨링된 방대한 데이터로부터 학습을 하기 때문에 정말로 '지능적인 모델'이 아니고 AI라는 ..

article thumbnail
[논문리뷰] Masked Autoencoders Are Scalable Vision Learners
Deep Learning 2021. 12. 1. 13:49

이번 포스팅에서는 2021년 11월 11일에 발표된 Masked Autoencoders Are Scalable Vision Learners 논문을 모델 구현과 함께 리뷰하려고 한다. 해당 논문은 FAIR(Facebook AI Research)의 Kaiming He가 1저자로 나온다. (Kaiming He라는 이름만으로 또 어떤 아이디어를 제시했을지 기대하게 되는것 같다.) 이 논문에서 제시한 Masked Autoencoder(이하 MAE)는 Self-Supervised Learning 분야를 다루는 모델이다. 논문을 다루기 전에 먼저 Self-Supervised Learning에 대해 알아보자 Self-Supervised Learning 딥러닝 분야에서 가장 많이 사용되는 Supervised Learni..

article thumbnail
[논문리뷰] Swin Transformer
Deep Learning 2021. 5. 30. 23:35

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows Ze Liu† / Yutong Lin† / Yue Cao / Han Hu / Yixuan Wei† / Zheng Zhang / Stephen Lin / Baining Guo / Microsoft Research Asia 이번 포스팅에서는 2021년 3월에 마이크로소프트(아시아)에서 발표한 Swin Transformer에 대해 알아보려고 한다. 해당 논문은 ViT에서 모든 patch가 self attention을 하는 것에 대한 computation cost를 지적하면서 각 patch를 window로 나누어 해당 윈도우 안에서만 self attention을 수행하고 그 윈도우를 ..